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1 Introduction

During the past few years, there has been a significant 
industrial interest in using dry machining. Due to its many 
advantages, such as the reduced cycle times, improved 
flexibility, reduced machine tool costs and the fact that it 
is environmentally friendly, dry machining has become a 
very popular finishing process. Hard turning is defined as 
the process of single point cutting of pieces that have hard-
ness values over 45 HRC, more typically ranging from 52 
to 65 HRC [1, 2]. The selection of the most appropriate 
machining settings is crucial for the turning process since it 
can improve cutting efficiency, produce high-quality prod-
ucts and reduce process costs [3]. An increasing number of 
papers have been developing mathematical models to ana-
lyze the machinability of hard turning process.

Optimization of multiple responses is essential for pro-
ducing precision parts with low costs in turning operations. 
Taguchi methods and Response surface methodology have 
been widely employed for this kind of optimization prob-
lem. However, when there are correlated responses being 
analyzed, those methods can be inadequate. If the variance–
covariance structure among the responses is not considered, 
the optimization may lead to unsatisfactory results [4, 5]. 
The presence of such correlation, according to [6], can influ-
ence the optimization results, since it can create errors in the 
regression coefficients and unbalance the mathematical mod-
els. If the correlation (variance–covariance) is left out of the 
analysis, the regression equations cannot rightly represent 
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the objective or constraint functions [7]. Still, there are few 
researches involving the optimization for multiple responses 
problem in turning process.

Concerned with these issues, Paiva et al. [8] presented the 
multivariate mean square error (MMSE) as an alternative 
hybrid approach for multivariate optimization. The MMSE 
method combines response surface methodology (RSM) 
with principal component analysis (PCA), for the optimiza-
tion of the multiple correlated responses. This approach was 
first applied in a turning process, but it can be also applied 
to many other manufacturing processes presenting correlated 
responses. Although this approach is capable of suppressing 
the correlation’s effect, such methodology is unable to attrib-
ute weights when the multiple responses present different 
degrees of importance, since the correlation matrix is unable 
to transfer to the components the weights assigned to the 
original responses [9].

To overcome the deficiency of the MMSE methodology, 
Gomes et al. [10] proposed the weighted multivariate mean 
square error (WMMSE), an adaptation of traditional MMSE 
that is capable of assigning different weights for responses 
with different degrees of importance in the optimization 
problem. The WMMSE was applied in the optimization of a 
flux-cored arc welding (FCAW) for stainless steel cladding 
process.

Addressing, therefore, these issues, the objective of this 
work was to obtain a process set for the optimization of six 
outputs in the AISI 52100 hardened steel turning using the 
designed technology for wiper mixed ceramic inserts. The 
considered responses included end of tool life, cutting time, 
total cycle time, total cost, arithmetic mean roughness and 
maximum peak to valley roughness. The hardened steel turn-
ing was configured in terms of cutting speed, feed rate and 
depth of cut and the optimization problem included a con-
straint for the material removal rate (MRR). All six responses 
were modeled by applying the surface response methodology, 
which is a collection of mathematical and statistical tools 
used to determine the mathematical relationships between 
the responses (objective functions) and selected input param-
eters [11, 12]. Furthermore, these six responses were simul-
taneously optimized by MMSE and WMMSE approaches, 
in order to compare the obtained results. The genetic algo-
rithm was chosen for the optimization since it presents many 
advantages over traditional algorithms such as the fact that it 
is more efficient in solving complex problems [13].

2  Background

2.1  Response surface methodology

Response surface methodology is a combination of math-
ematical and statistical techniques used for modeling and 

analyzing problems in which the responses of interest 
are influenced by several variables [14]. Thus, when the 
mathematical relationships between input parameters and 
responses (objective functions) are unknown, the RSM 
enables such functions to be determined from experimental 
data, which are collected in a planned way [11].

The most employed experimental array in RSM is the 
central composite design (CCD). The CCD, built for k input 
variables, is a matrix composed of the following groups of 
experimental elements: a full factorial design  (2k) or frac-
tional factorial design  (2k−p, p is the desired fraction), a set 
of center points (cp) and a set of extra levels called axial 
points (2k). The total number of required experiments is 
given by the sum  2k (or k−p) + 2k + cp. For each axial point, 
there exists an associated parameter α, defined as the coded 
distance of this point in relation to the center points. The 
default value for α is obtained by the expression α = (2k)1/4 
[15].

After defining the experiments, as from the CCD, these 
are performed and the responses of interest are measured. 
With these data, the response surface function that relates a 
given response y with the k input variables is then modeled 
through the Eq. (1) [14], where y is the response of interest, 
xi are the input parameters, β0, βi, βii, βij are coefficients to 
be estimated and k is the number of input parameters con-
sidered [16].

The coefficients in Eq. (1) are usually determined by the 
Ordinary Least Squares (OLS) algorithm [14]. After the 
response surface modeling, the ANOVA statistical proce-
dure is applied in order to check the model’s significance 
and adjustment. Finally, once the objective functions have 
been determined and statistically tested, mathematical pro-
gramming techniques can be applied to these functions, so 
that the problem is optimized.

2.2  Multivariate mean square error

The MMSE, as presented by [17], is a method that com-
bines the RSM [14] and the PCA [18], for the optimiza-
tion of multiple correlated responses in multivariate pro-
cesses. Given that the principal component (PC), through 
its scores, can be modeled by RSM, the eigenvalue λ repre-
sents the variance and taking ζPC as target for the principal 
component, the MMSE is defined in Eq. (2) [8]:

In Eq. (2), PC is a second-order polynomial fitted in 
relation to the input variables. The target ζPC must keep a 
straightforward relation with the targets of the responses of 

(1)y = β0 +

k
∑

i=1

βixi +

k
∑

i=1

βiix
2
i +
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(2)MMSE = (PC− ζPC)
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interest, presenting a compatible value with the objectives 
of the original problem and it is established using Eq. (3) 
[8], where e is the eigenvector associated with the principal 
component, p is the number of responses of interest.

The term Z(Yj|ζYj ) in Eq. (3) is the standardization of 
the responses of interest in relation to their targets and it 
can be calculated as in Eq. (4), where ζYj, µYj and σYj are 
the target, mean and standard deviation for the jth response, 
respectively.

The MMSE must be minimized since it is expected the 
PC to achieve the established target with minimum vari-
ance. When more than one principal component is needed, 
the total multivariate mean square error  (MMSET) can be 
optimized as in Eq. (5):

In Eq. (5);  MMSEi is the multivariate mean square 
error for the ith principal component; m is the number of 
needed principal components; p is the number of responses 
of interest;  PCi is the response surface function for the 
ith principal component; ζPCi

 is the target for the ith prin-
cipal component; λi is the eigenvalue for the ith principal 
component. gn(x) ≤ 0 represents a constraint equation and 
xTx ≤ α2 is the spherical constraint for the experimen-
tal region [10]. Since the principal components are linear 
combinations of the original responses, their optimization 
implies the optimization of the responses of interest.

2.3  Weighted multivariate mean square error

The MMSE formulation can only be applied when the 
responses of interest are treated with the same weights. In 
order to be able to optimize correlated responses with dif-
ferent degrees of importance, Gomes et al. [10] proposed 
the WMMSE. For applying the WMMSE, the following 
procedure must be followed [10]:

(3)ζPC = eT[Z(Yj|ζYj )] =

p
∑

j=1

ej · [Z(Yj|ζYj )]

(4)Z(Yj|ζYj ) =
ζYj − µYj

σYj

(5)

Minimize MMSET =

[

m
∏

i=1

MMSEi

]

(

1
m

)

=

{

m
∏

i=1

[(PCi − ζPCi
)2 + �i]

}

(

1
m

)

, m ≤ p

(6)Subject to : gn(x) ≤ 0

(7)x
T
x ≤ α2

Step 1  The method starts with the standardization of the 
responses, which is important to unify the data 
set. The responses of interest collected in RSM 
may be standardized using the transformation: 
Z(y) = [y − µYj ] · (σYj )

−1

Step 2  Multiplied each standardized response by its 
respective weight, ωj, such that 

∑

ωj = 1.
Step 3  Extract the principal component scores using the 

variance–covariance matrix (unlike the MMSE 
approach, in which the scores are extracted from 
correlation matrix).

Step 4  Define the number of principal components 
which must be retained in the analysis and pro-
duce pairs of weighted eigenvectors (e∗i ) and 
eigenvalues (�∗i ).

Step 5  Establish RSM models for the significant princi-
pal components using the scores obtained in step 
3.

Step 6  Calculate the respective targets for each princi-
pal component taking into account the weighted 
responses.

Step 7  Once the responses of interest have been 
weighted, the WMMSE optimization can be 
obtained as in Eq. (8), where  WMMSET is the 
total weighted multivariate mean square error; 
 WMMSEi is the weighted multivariate mean 
square error for the ith principal component; υi 
is the degree of explanation for the ith princi-
pal component, such that 

∑

υi = υT; PCi
* is the 

response surface function for the ith principal 
component obtained with the weighted responses; 
ζ ∗PCi

 is the target for the ith principal component 
obtained with the weighted responses, calculated 
by: ζ ∗

PCi
= e∗i1 · Z(Y1|ζY1)+ e∗i2 · Z(Y2|ζY2)+ · · ·  

+e∗ip · Z(Yp|ζYp) ; λi
* is the eigenvalue for the ith 

principal component obtained with the weighted 
responses [10]

As it can be observed, the principal components are also 
weighted in the WMMSE function. However, these weights 
are attributed taking into account the degree of explanation 
of each component [10]. In both approaches presented, the 
optimal point can be identified by employing optimization 

(8)
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algorithms on Eqs. (5)–(7) and Eqs. (8)–(10), respectively. 
For this study, the genetic algorithm was used in the opti-
mization, since it has been characterized in the literature as 
an effective algorithm to global optimization [19, 20].

2.4  Genetic algorithm

The use of genetic algorithms (GA) is observed in several 
studies regarding manufacturing processes optimization, 
which also usually apply RSM as a mechanism for objec-
tive function building [21]. The GA procedure is grounded 
on the principles of natural selection. Assuming a popu-
lation of solutions instead of a single one, this algorithm 
can be used for optimizing both constrained and uncon-
strained problems and also for single [22] or multiobjective 
problems [23, 24]. Most of GAs can also convert the con-
strained optimization problem into an unconstrained one, 
using a penalty function before the solution [22]. Every 
solution suggested by this iterative method is represented 
by a vector x of independent variables, where usually is 
used the binary coding for converting the independent vari-
ables of the problem into genes of a chromosome [19]. If 
the solution is not adequate for the objective function mini-
mization, the problem is penalized. The GA mechanics is 
simple, involving the copy and swap of the binary strings.

Genetic algorithms usually work in three stages: (a) 
reproduction, (b) crossover and (c) mutation. The GA per-
formance depends mainly on critical parameters as popula-
tion size, crossover rate, mutation rate, number of iterations 
(generations) and their values [22]. Its advantage over tra-
ditional optimization methods is that it can simultaneously 
operate with a large set of search space points instead of a 
single point. On the other hand, a possible drawback is the 
fact that a large computational effort is required [25].

3  Experimental method

To accomplish the aims previously proposed, the optimi-
zation strategy was performed in three stages. Initially, the 
RSM was employed to the experiments planning, data col-
lection, modeling of responses of interest and modeling 
of principal component scores. Then, the MMSE and the 
WMMSE methodologies were applied to the problem for-
mulation, considering equal weights and different weights 

between the responses, respectively. Finally, the genetic 
algorithm was executed to identify the optimal point for 
both problems.

3.1  Experiments planning

Turning processes are commonly set by cutting speed (Vc), 
feed rate (f) and depth of cut (d). So, these variables were 
defined as input parameters. The experiments schedule 
was created as a CCD, for three parameters in two levels 
 (2k = 23 = 8), six axial points (2k = 6) and five center 
points (cp = 5), resulting in a total of 19 experiments. The 
coded distance from the center point to axial point (α) was 
1.682. Table 1 presents the input parameters and their lev-
els in the CCD array.

The set of responses included seven turning outputs, six 
of them to be optimized and one to be taken as a constraint. 
The characteristics to be optimized were end of tool life 
(T), cutting time (Ct), total cycle time (Tt), total cost (Kp), 
arithmetic mean roughness (Ra) and maximum peak to val-
ley roughness (Rt). The MRR was taken as a constraint, to 
ensure the process optimization with good productivity.

3.2  Experimental procedure

For data collection, dry turning tests were conducted on a 
CNC lathe with a maximum rotational speed of 4000 rpm 
and power of 5.5 kW. The workpieces of AISI 52100 steel, 
with chemical composition 1.03% C, 0.23% Si, 0.35% 
Mn, 1.40% Cr, 0.04% Mo, 0.11% Ni, 0.001% S, 0.01% 
P, were prepared with dimensions of φ 49 mm × 50 mm 
and were quenched and tempered. After this heat treat-
ment, their hardness was between 49 and 52 HRC, up to 
a depth of 3 mm below the surface. Figure 1 illustrates 
the AISI 52100 hardened steel turning process with wiper 
inserts considered in this work. Wiper mixed ceramic 
 (Al2O3 + TiC) inserts (CNGA 120408 S01525WH), 
coated with a very thin layer of titanium nitride (TiN), 
were the employed tool (Fig. 2a). The tool holder had a 
negative geometry with ISO code DCLNL 1616H12 and 
entering angle χr = 95°.

For the tool life measurement, the wiper inserts were 
worn until their flank wear  (VBC) indicator on the tool tip to 
reach 0.30 mm. This was the adopted criterion for the end 
of tool life and it was measured by an optical microscope. 

Table 1  Parameters and their 
levels

Parameters Unit Notation Levels

−1.682 −1 0 +1 +1.682

Cutting speed m/min Vc 186 200 220 240 254

Feed rate mm/rev f 0.13 0.20 0.30 0.40 0.47

Depth of cut mm d 0.10 0.15 0.22 0.30 0.35
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Once  VBC reached 0.30 mm (Fig. 2c), the number of steps 
executed until this condition was accounted.

The arithmetic mean roughness (Ra) and the maximum 
peak to valley roughness (Rt), both in μm, were measured 
for each wiper insert in its end of life. These responses 
were collected by a portable roughmeter (Fig. 3a), set to a 
cutoff length of 0.8 mm. The measurements were taken at 
three different points of the workpiece (Fig. 3b). Each point 
was measured four times (giving a total of twelve meas-
ures) and the mean value among them was considered.

A scanning electron microscopy (SEM) was applied for 
surface morphology examination. The workpieces’ surfaces 
were analyzed in the SEM with the objective of verifying 
the deformation (lateral flow) of the peaks presented on the 
machined material. Figures 4, 5 and 6 show the analysis 
of the machining peaks for a feed rate f = 0.25 mm/rev. 
The distance between two peaks that obtained values close 
to 50 μm is presented in Fig. 4. In Figs. 5 and 6, a spe-
cific point of the material was analyzed, which presented 
a deformation width much greater than the other ones. The 
peak width and depth values for the workpieces machined 
with f = 0.25 mm/rev were larger than the ones machined 
with f = 0.13 mm/rev and f = 0.20 mm/rev. Larger feed 
rates are more aggressive to the material and require 
more cutting effort, which also results in greater material 
deformation.

As for the MRR, such response was easily calculated 
by multiplying the cutting speed by feed rate by the depth 
of cut. It is expressed in  cm3/min. The end of tool life 
(T), in minutes, was then obtained multiplying the total 
number of passes by the cutting time (Ct) in each pass, 
this latter calculated as in Eq. (11), where lf is the length 
of the workpiece (50 mm), d is the diameter of the work-
piece (49 mm), f is the feed rate (mm/rev) and Vc is the 
cutting speed (m/min).

As from the end of tool life measurement, cutting time 
calculation and with the information in Table 2, the total 
cycle time (Tt) and the total cost (Kp) were calculated 
through Eqs. (12) and (13).

In Eqs. (12) and (13), T is the tool life (min), Ct is the 
cutting time (min), t1 is the unproductive time, calculated 
by t1 = ts + ta +

tp
Z
−

ti
Z
 (min) and t2 is the tool changing 

time, calculated by t2 =
Ct
T
· ti (min).

After all responses were collected, these were assem-
bled to compound the experimental matrix (Table 3), 

(11)Ct =
lf · π · d

1000 · f · Vc
(min)

(12)Tt = Ct + t1 + t2 (min)

(13)

Kp =

[

t1

60
−

1

Z

]

· (Sh + Sm)+
Ct

60
· (Sh + Sm)

+
Ct

T
·

[(

Kth

Nth
+

Ki

Ni

)

+
ti

60
· (Sh + Sm)

]

(U$)

 

Workpiece
Counterpoint

Toolholder

Tool CG 6050 Wiper

Spindle

Fig. 1  AISI 52100 hardened steel turning process with wiper inserts

Fig. 2  Tool flank wear: a 
CG6050 wiper insert; b new 
tool edge; c worn tool edge 
 (VBC 0.30 mm)

Fig. 3  a Roughness measurement; b surface roughness measurement 
positions
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used as data source for the modeling and optimization of 
the process.

4  Results

4.1  Modeling of turning outputs

With the aim of verifying the behavior of AISI 52100 
hardened steel turning outputs during the optimization 
process, all responses were modeled according to RSM. 
So, writing the generic model stated in Eq. (1) for the 
three input parameters considered in this work, the fol-
lowing expression is obtained:

In Eq. (14), Vc, f and d are expressed in their coded 
form. The OLS algorithm, through software Minitab, was 
employed to determine the coefficients β0, βi, βii, βij of 
the models. Then, it was used the ANOVA procedure, 
also by Minitab, to check their statistical significance and 
to remove the no significant terms. Table 4 presents the 
developed coefficients for the final quadratic models.

The results of ANOVA are presented in Table 5, show-
ing regression p values less than 5% of significance and 
adjustments above 90% for all responses. These results 
indicate that the models are statistically significant and, 
therefore, can be used in prediction and control of the 
turning outputs.

The response surface plots in Fig. 7 and the main 
effect plots in Fig. 8 illustrate how the machining param-
eters influence the responses that will be optimized. It is 
essential to realize that the feed rate (f) is the factor that 
most affect each response. For lower cutting speeds and 
feed rates, the maximum values of tool life (T) and mini-
mum values of mean roughness (Ra) and maximum peak 
to valley roughness (Rt).can be found. Higher values of 
Vc and f ensure lower cutting time (Ct), total cycle time 
(Tt) and total cost (Kp).

4.2  MMSE optimization

The correlation structure between the responses to be 
optimized is shown in Table 6. As can be observed, these 
data are highly correlated, which makes of MMSE an 
appropriate approach to this problem.

Applying the PCA on the responses of Table 3, it was 
found the results presented in Table 7, which identified 
that 95.1% of the data are explained by three principal 

(14)

y = β0 + β1Vc + β2f + β3d + β11V
2
c + β22f

2

+ β33d
2
+ β12Vc · f + β13Vc · d + β23f · d

Fig. 4  Distance between peaks for workpiece (f = 0.25 mm/rev)

Fig. 5  Width of material deformation at a specific point 
(f = 0.25 mm/rev)

Fig. 6  Depth of specific material deformation peak (f = 0.25 mm/
rev)
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components. These new uncorrelated variables were then 
used to represent the original correlated responses during 
the optimization.

The next step consists in determining the quad-
ratic models for the significant principal components. 
Thus, taking the scores calculated in the PCA and mod-
eling these data according to RSM, Eqs. (15)–(17) were 
obtained. The results of ANOVA for these models identi-
fied p values less than 5% of significance for all of them. 
In relation to their adjustments, PC1 presented an adj. R2 
of 97.99%, with 95.15% for PC2 and 89.26% for PC3.

The targets for the principal components were estab-
lished based on the targets of the original responses. These 
latter were established according to the distribution of 
experimental data (Table 8). For those responses whose 
optimization objective was chosen as maximization, the tar-
gets were defined near from the third quartile (Q3), while 
in those defined as minimization, the targets were fixed at 
values lesser than the first quartile (Q1). All the statistical 
metrics were calculated using the experimental data.

The data contained in Table 9, through Eqs. (3) and 
(4), were then used to calculate the targets for the prin-
cipal components, resulting in targets of −0.816, −2.001 
and 2.113 for PC1, PC2 and PC3, respectively.

(15)

PC1 = 0.088− 0.379Vc − 2.295f + 0.130d

− 0.144V2
c + 0.349f 2 − 0.328d2

+ 0.299Vc · f + 0.110Vc · d

(16)

PC2 = 0.982+ 0.075Vc + 0.050f + 0.599d − 0.565V2
c

− 0.356f 2 − 0.444d2 − 0.290Vc · f

− 0.321Vc · d − 0.486f · d

(17)

PC3 = 0.449+ 0.322Vc − 0.073f − 0.074d

+ 0.086V2
c − 0.423f 2 − 0.288d2

+ 0.316Vc · f + 0.307Vc · d

Table 2  Data for total cycle time and total cost calculations

Description Symbol Unit Value

Secondary time ts Min 0.5

Tool approximation and retreat time ta Min 0.1

Set-up time tp Min 60

Insert changing time ti Min 1

Batch size Z Units 1.000

Machine and labor costs Sm + Sh U$ 50

Tool holder price Kth U$ 125

Insert price Ki U$ 31.25

Average tool holder life Nth Edges 1.000

Number of cutting edges on the insert Ni Edges 4

Table 3  Experimental matrix

Test Parameters Responses

Vc (m/min) f (mm/rev) d (mm) T (min) Ct (min) Tt (min) Kp (U$) Ra (μm) Rt (μm) MRR  (cm3/min)

1 −1 −1 −1 17.21 0.19 0.86 0.76 0.25 1.41 6.00

2 +1 −1 −1 11.37 0.16 0.83 0.76 0.27 1.72 7.20

3 −1 +1 −1 5.96 0.10 0.77 0.72 0.31 2.12 12.00

4 +1 +1 −1 4.48 0.08 0.76 0.72 0.30 2.15 14.40

5 −1 −1 +1 9.42 0.19 0.87 0.84 0.25 1.45 12.00

6 +1 −1 +1 7.37 0.16 0.84 0.82 0.25 1.58 14.40

7 −1 +1 +1 4.03 0.10 0.78 0.79 0.34 2.01 24.00

8 +1 +1 +1 6.10 0.08 0.75 0.68 0.29 1.99 28.80

9 −1.682 0 0 9.51 0.14 0.81 0.74 0.29 1.69 12.28

10 +1.682 0 0 6.86 0.10 0.77 0.71 0.26 1.81 16.76

11 0 −1.682 0 14.18 0.27 0.95 0.89 0.21 1.54 6.29

12 0 +1.682 0 4.12 0.07 0.75 0.72 0.31 2.54 22.75

13 0 0 −1.628 9.42 0.12 0.79 0.70 0.31 1.94 6.60

14 0 0 +1.682 4.92 0.12 0.80 0.80 0.31 1.74 23.10

15 0 0 0 4.89 0.12 0.80 0.81 0.26 1.81 14.52

16 0 0 0 5.00 0.12 0.80 0.80 0.26 1.71 14.52

17 0 0 0 4.77 0.12 0.80 0.81 0.26 1.71 14.52

18 0 0 0 5.01 0.12 0.80 0.80 0.26 1.71 14.52

19 0 0 0 5.12 0.12 0.80 0.80 0.26 1.71 14.52
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Having developed the RSM models for the significant 
principal components and taking their calculated targets, 
the MMSE formulation was built, considering equal 
weights for all responses and equal weights for all princi-
pal components, which resulted in Eq. (18).

In Eq. (18), PC1, PC2 and PC3 are the RSM models 
described in Eqs. (15), (16) and (17), MRR is the constraint 
for MRR and xTx is the spherical constraint for the experi-
mental region.

As previously presented, the MRR was treated in this prob-
lem as a constraint, looking for ensuring a minimum produc-
tivity of the turning process. The genetic algorithm was applied 
in the MMSE formulation after it was programmed in a Micro-
soft Excel worksheet. By employing the Solver Evolutionary 
supplement, considering the GA parameters in Table 10, the 

(18)

Min MMSET = {[(PC1+ 0.816)2 + 4.435]

· [(PC2+ 2.0001)2 + 0.872]

· [(PC3− 2.113)2 + 0.397]}

(

1
3

)

St: MRR ≥ 16.00

x
T
x ≤ 2.829

optimal point was identified (Table 11). The values of GA 
parameters were empirically chosen after preliminary tests.

Finally, applying this optimal combination of the input 
parameters in the developed models for the turning outputs 
(Table 4) and replacing their coded values by operational 
values (in uncoded form), it was found that the AISI 52100 
hardened steel turning, with a reliability of 95%, is opti-
mized with the following results presented in Table 12.

Good solutions were reached for practically all 
responses. The production times were better than their tar-
gets and the optimal values for total cost, average surface 
roughness and maximum peak to valley roughness estab-
lished close to their desired values. However, the tool 
presented a relatively low life. This is mainly explained 
due to the multi-objective nature of the problem, in which 
one or more responses tend to be impaired in favor of the 
global optimization of all characteristics. Furthermore, 
the turning process was optimized considering the same 
weights between the responses. Therefore, with the aim 
of improving these results, it was employed the WMMSE, 
in order to perform a new optimization of the process, but 
now considering the responses with different degrees of 
importance.

Table 4  Coefficients for 
the final quadratic models of 
turning outputs

Coef. Responses

T Ct Tt Kp Ra Rt MRR

β0 4.963 0.116 0.799 0.804 0.260 1.724 14.586

β1 −0.861 −0.012 −0.012 −0.012 −0.007 0.048 1.343

β2 −3.055 −0.050 −0.050 −0.040 0.028 0.278 4.926

β3 −1.440 – 0.003 0.025 0.000 −0.052 4.932

β11 1.115 – −0.003 −0.027 0.005 – –

β22 1.456 0.019 0.017 – – 0.094 –

β33 0.756 – −0.003 −0.017 0.018 0.023 0.151

β12 1.060 0.004 – −0.011 −0.010 −0.054 0.450

β13 0.918 – – −0.015 −0.008 −0.029 0.450

β23 1.435 – – −0.015 0.005 – 1.650

Table 5  ANOVA results Degrees of 
freedom

Sum of squares Mean square F p value Adj. R2 (%)

RG* RS RG RS RG RS

T 9 9 240.96 0.316 26.77 0.035 761.7 0.000 99.74

Ct 4 14 0.041 0.001 0.010 0.000 197.3 0.000 97.76

Tt 6 12 0.040 0.001 0.007 0.000 92.1 0.000 96.81

Kp 8 10 0.049 0.003 0.006 0.000 23.3 0.000 90.82

Ra 8 10 0.018 0.000 0.002 0.000 185.2 0.000 98.79

Rt 7 11 1.274 0.042 0.182 0.004 47.4 0.000 94.75

MRR 7 11 713.54 0.393 101.93 0.036 2853.7 0.000 99.91
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4.3  WMMSE optimization

Table 13 presents the calculated values after the stand-
ardization and weighting of the original responses (step 
1 and step 2 described in Sect. 2.3). For this, the end of 
tool life, which is the characteristic to be improved, was 
judged three times more important than cutting time, total 
cycle time and total cost, and one and a half time more 

important than average surface roughness and maximum 
peak to valley roughness. The arithmetic mean roughness 
and maximum peak to valley roughness were considered 
twice more important than cutting time, total cycle time 
and total cost.

The PCA, applied on the data of Table 13 and using now 
the variance–covariance matrix (step 3), identified again 
that three principal components are needed to represent the 
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responses since they explain 96.4% of data (Table 14). Thus, 
these components were used in the optimization (step 4).

The RSM models for the principal components of the 
weighted responses (step 5) are presented in Eqs. (19)–
(21). Such functions were determined as from the scores 
extracted in the PCA and using the same methodology of 
the previous developed models. Again, all models pre-
sented p values less than 5% of significance. The adj. 

R2 values were 99.37% for  PC1*, 96.92% for  PC2* and 
87.44% for  PC3*.

The targets for the principal components of the 
weighted responses (step 6) were calculated using 
Table 15 and Eqs. (3) and (4), similarly to the estab-
lished targets in MMSE optimization. It was found 0.362 
for  PC1*, −0.874 for  PC2* and −0.660 for  PC3*. Then, 
the WMMSE formulation (step 7) was built following 
Eq. (22), where  PC1*,  PC2*,  PC3*are the RSM models 
described in Eqs. (19), (20) and (21), respectively, MRR 
is the constraint for MRR and xTx is the spherical con-
straint for the experimental region.

(19)

PC1
∗ = −0.077− 0.064Vc − 0.402f − 0.061d + 0.048V2

c

+ 0.074f 2 − 0.014d2 + 0.106Vc · f

+ 0.078Vc · d + 0.074f · d

(20)

PC2
∗ = 0.222+ 0.043Vc − 0.056f + 0.109d − 0.092V2

c

− 0.099f 2 − 0.118d2 − 0.013Vc · f

− 0.025Vc · d − 0.097f · d

(21)

PC3
∗ = −0.014− 0.053Vc − 0.014f + 0.040d + 0.017V2

c

− 0.056f 2 + 0.059d2 − 0.024Vc · f

− 0.026Vc · d + 0.023f · d
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Fig. 8  Main effects plot for the six responses to be optimized

Table 6  Correlation between the responses

Cells: Pearson correlation

p value

T Ct Tt Kp Ra

Ct 0.809

0.000

Tt 0.754 0.996

0.000 0.000

Kp 0.155 0.678 0.745

0.526 0.001 0.000

Ra −0.497 −0.730 −0.741 −0.604

0.031 0.000 0.000 0.006

Rt −0.585 −0.748 −0.760 −0.622 0.720

0.009 0.000 0.000 0.005 0.001
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(22)

Min WMMSET =
0.724

0.964
[(PC1∗ − 0.362)2 + 0.145]

+
0.185

0.964
[(PC2∗ + 0.874)2 + 0.037]

+
0.055

0.964
[(PC3∗ + 0.660)2 + 0.011]

St : MRR ≥ 16.00

x
T
x ≤ 2.829

Table 7  Principal component 
analysis for the original 
responses

Data extracted from correlation matrix

Eigenvalue 4.435 0.872 0.397 0.279 0.018 0.000

Proportion 0.739 0.145 0.066 0.046 0.003 0.000

Cumulative 0.739 0.884 0.951 0.997 1.000 1.000

Eigenvector PC1 PC2 PC3 PC4 PC5 PC6

T 0.353 −0.708 −0.085 −0.016 −0.605 0.000

Ct 0.460 −0.134 −0.302 0.122 0.465 −0.669

Tt 0.463 −0.036 −0.323 0.104 0.355 0.737

Kp 0.351 0.669 −0.378 −0.050 −0.524 −0.095

Ra −0.397 −0.162 −0.670 −0.602 0.068 0.000

Rt −0.410 −0.071 −0.453 0.781 −0.113 0.000

Table 8  Targets for the original 
responses

Objective T (max) Ct (min) Tt (min) Kp (min) Ra (min) Rt (min) MRR (max)

 Mean 7.355 0.129 0.807 0.772 0.276 1.807 14.694

 Median 5.960 0.117 0.799 0.789 0.260 1.720 14.520

 Q3 9.420 0.160 0.833 0.806 0.310 1.990 16.764

 Q1 4.890 0.096 0.775 0.721 0.260 1.690 12.000

 Target 10.000 0.100 0.770 0.630 0.250 1.700 16.000

Table 9  Data used in the 
establishment of targets for the 
principal components

T Ct Tt Kp Ra Rt

Mean 7.355 0.129 0.807 0.772 0.276 1.807

Standard deviation 3.661 0.048 0.048 0.054 0.031 0.270

Target 10.00 0.10 0.77 0.63 0.25 1.70

Standardization 0.723 −0.611 −0.778 −2.635 −0.841 −0.397

Eigenvector PC1 0.353 0.460 0.463 0.351 −0.397 −0.410

Eigenvector PC2 −0.708 −0.134 −0.036 0.669 −0.162 −0.071

Eigenvector PC3 −0.085 −0.302 −0.323 −0.378 −0.670 −0.453

Table 10  GA parameters used in the optimization

Parameters Values

Iterations 1000

Convergence 0.0001

Population size 100

Mutation rate 0.10

Maximum time without improvement 100 s

Table 11  Optimal point 
identified in the MMSE 
approach

Parameters Responses

Vc f d PC1 PC2 PC3 MMSET

Optimal point 1.600 0.345 0.385 −1.405 −0.629 1.402 2.282

Targets – – – −0.816 −2.001 2.113 –
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In this formulation, it is convenient to highlight that, 
besides the responses, the principal components are also 
weighted, being these attributed weights based on the 
degree of explanation of each component.

The genetic algorithm was also applied in the 
WMMSE formulation, using the Solver Evolutionary 
supplement with the same parameters of Table 9. Table 16 
presents the identified optimal point and Table 17 shows 

these results, with 95% of reliability, for the AISI 52100 
hardened steel turning process.

4.4  Results and comparison

The results found with the MMSE and WMMSE optimiza-
tions are presented in Table 18. Basically, the difference 
between the identified optimal points in both approaches 

Table 12  Optimal results 
for the AISI 52100 hardened 
steel turning obtained with the 
MMSE approach

Parameters Responses

Vc f d T Ct Tt Kp Ra Rt MRR

Optimal point 252 0.33 0.25 6.46 0.08 0.76 0.69 0.27 1.84 21.11

Targets – – – 10.00 0.10 0.77 0.63 0.25 1.70 ≥16.00

Units m/min mm/rev mm min min min U$ μm μm cm3/min

Table 13  Standardization 
and weighting of the original 
responses

Test 0.3·Z(T) 0.1·Z(Ct) 0.1·Z(Tt) 0.1·Z(Kp) 0.2·Z(Ra) 0.2·Z(Rt)

1 0.808 0.131 0.116 −0.028 −0.168 −0.294

2 0.329 0.065 0.055 −0.030 −0.040 −0.065

3 −0.114 −0.069 −0.075 −0.095 0.215 0.231

4 −0.236 −0.102 −0.105 −0.092 0.151 0.253

5 0.169 0.131 0.135 0.123 −0.168 −0.264

6 0.001 0.065 0.071 0.095 −0.168 −0.168

7 −0.272 −0.069 −0.059 0.030 0.407 0.150

8 −0.103 −0.102 −0.115 −0.169 0.087 0.135

9 0.177 0.018 0.009 −0.058 0.087 −0.087

10 −0.041 −0.059 −0.068 −0.111 −0.104 0.002

11 0.559 0.291 0.292 0.217 −0.424 −0.198

12 −0.265 −0.114 −0.116 −0.098 0.215 0.542

13 0.169 −0.026 −0.040 −0.125 0.215 0.098

14 −0.200 −0.026 −0.016 0.059 0.215 −0.050

15 −0.202 −0.026 −0.016 0.061 −0.104 0.002

16 −0.193 −0.026 −0.017 0.053 −0.104 −0.072

17 −0.212 −0.026 −0.015 0.071 −0.104 −0.072

18 −0.192 −0.026 −0.017 0.052 −0.104 −0.072

19 −0.183 −0.026 −0.018 0.044 −0.104 −0.072

Table 14  Principal component 
analysis for the weighted 
responses

Data extracted from variance–covariance matrix

Eigenvalue 0.145 0.037 0.011 0.007 0.000 0.000

Proportion 0.724 0.185 0.055 0.035 0.001 0.000

Cumulative 0.724 0.909 0.964 0.999 1.000 1.000

Eigenvector PC1* PC2* PC3* PC4* PC5* PC6*

0.3·Z(T) 0.716 −0.652 −0.058 0.021 0.242 0.000

0.1·Z(Ct) 0.245 0.045 −0.015 −0.404 −0.572 0.669

0.1·Z(Tt) 0.239 0.086 0.003 −0.450 −0.436 −0.737

0.1·Z(Kp) 0.127 0.348 0.124 −0.648 0.647 0.095

0.2·Z(Ra) −0.405 −0.531 0.691 −0.273 −0.040 0.000

0.2·Z(Rt) −0.435 −0.403 −0.710 −0.374 0.064 0.000
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occurred in terms of the feed rate of the process. The 
WMMSE approach identified a low feed rate (0.25 mm/
rev) in comparison to the value found in MMSE (0.33 mm/
rev). As a consequence, an improvement of 11.3% was 
observed for the end of tool life, which increased from 6.46 
to 7.19 min. Furthermore, the finishing of the machined piece 
was better in the second optimization, since the average sur-
face roughness reached its target and the maximum peak to 
valley roughness was better than its target. Because they have 
received the lowest weights in the optimization, the cutting 
time, the total cycle time and the total cost increased in rela-
tion to the values obtained with the MMSE optimization. 
However, these responses were still close to their specified 
values and, therefore, were considered satisfactory. Figure 9 
presents the overlaid contour plots for this process, high-
lighting how the optimal point changes when the multiple 
responses are optimized with different degrees of importance. 

As it was said in the introduction of this study, tradi-
tional optimization methods that do not consider the cor-
relation between the responses can lead to unsatisfactory 
results. For demonstration, we have also applied the gray 
relational analysis (GRA) for the optimization of the six 
responses, in order to compare the results found in the 
MMSE and WMMSE optimization. GRA optimization 
results are presented in Table 18, where it is possible to 
notice that both MMSE and WMMSE approaches present 
better optimal points for most of the responses.

5  Confirmation runs

The confirmation runs were conducted to check whether 
the responses at optimum highlighted by the optimization 
method employed are really attainable. The average results 

Table 15  Data used to calculate 
the targets for the principal 
components of the weighted 
responses

T Ct Tt Kp Ra Rt

Mean 7.355 0.129 0.807 0.772 0.276 1.807

Standard deviation 3.661 0.048 0.048 0.054 0.031 0.270

Target 10.00 0.10 0.77 0.63 0.25 1.70

Standardization 0.723 −0.611 −0.778 −2.635 −0.841 −0.397

Eigenvector  PC1* 0.716 0.245 0.239 0.127 −0.405 −0.435

Eigenvector  PC2* −0.652 0.045 0.086 0.348 −0.531 −0.403

Eigenvector  PC3* −0.058 −0.015 0.003 0.124 0.691 −0.710

Table 16  Optimal point 
identified in the WMMSE 
approach

Parameters Responses

Vc f d PC1* PC2* PC3* WMMSET

Optimal point 1.505 0.547 0.514 0.094 0.123 −0.035 0.384

Targets – – – 0.362 −0.874 −0.660 –

Table 17  Optimal results 
for the AISI 52100 hardened 
steel turning obtained with the 
WMMSE approach

Parameters Responses

Vc f d T Ct Tt Kp Ra Rt MRR

Optimal point 250 0.25 0.26 7.19 0.13 0.81 0.76 0.25 1.67 16.25

Targets – – – 10.00 0.10 0.77 0.63 0.25 1.70 ≥16.00

Units m/min mm/rev mm min min min U$ μm μm cm3/min

Table 18  Optimal results for 
AISI 52100 hardened steel 
turning

Parameters Responses

Vc f d T Ct Tt Kp Ra Rt MRR

Targets – – – 10.00 0.10 0.77 0.63 0.25 1.70 ≥16.00

Optimal point, MMSE 252 0.33 0.25 6.46 0.08 0.76 0.69 0.27 1.84 21.11

Optimal point, WMMSE 250 0.25 0.26 7.19 0.13 0.81 0.76 0.25 1.67 16.25

Optimal point, GRA 254 0.47 0.15 6.89 0.08 0.73 0.62 0.30 2.51 18.09

Units m/min mm/rev mm min min min U$ μm μm cm3/min
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of the confirmation experiment are the final step of the anal-
ysis of findings acquired. According to the results shown in 
Table 19, it can be concluded that the optimization method 
employed reached responses of exposed targets.

From the relations between flank wear and number 
of steps in the workpiece, it was obtained the end of 
life of the cutting tool, at the point at which the value 
of the flank wear reaches 0.3 mm. Figure 10 shows the 
tool wear  VBC function of the numbers steps in AISI 
52100 steel with the parameter values: Vc = 250 m/min, 
f = 0.25 mm/rev, d = 0.26 mm.

6  Conclusions

This work’s aims are twofold: (a) to present the multi-
objective optimization for highly correlated responses of 
the AISI 52100 hardened steel turning using wiper mixed 
ceramic inserts and (b) for such purpose, to employ 
both the MMSE and the WMMSE approaches so that a 
comparison may be made. The multiple responses were 

optimized with once with equal weights and once with 
different ones, taking into consideration the correlation 
structure between them. Based on this work’s results, the 
following conclusions can be drawn:

Fig. 9  Overlaid contour plots

Table 19  Optimal results for 
AISI 52100 hardened steel 
turning

Parameters Responses

Vc f d T Ct Tt Kp Ra Rt MRR

Optimal point, WMMSE 250 0.25 0.26 7.19 0.13 0.81 0.76 0.25 1.67 16.25

Confirmation runs

 1 250 0.25 0.26 7.17 0.13 0.81 0.76 0.25 1.67 16.25

 2 250 0.25 0.26 7.16 0.13 0.80 0.76 0.26 1.66 16.25

 3 250 0.25 0.26 7.17 0.13 0.81 0.76 0.25 1.68 16.25

 Means 250 0.25 0.26 7.17 0.13 0.81 0.76 0.25 1.67 16.25

 Units m/min mm/rev mm min min min U$ μm μm cm3/min

Fig. 10  VBC × steps AISI 52100 steel: Vc = 250 m/min, 
f = 0.25 mm/rev, d = 0.26 mm
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•	 All developed models, both for turning outputs and for 
principal components, can be used in prediction and 
control of the process since they yielded p values less 
than 5% of significance and adjustments above 87%.

•	 The PCA reduced the problem dimensionality by 
50%, once three principal components were enough to 
represent the six optimized responses.

•	 The MMSE optimization method provided good solu-
tions for most of the responses. However, due to the 
multi-objective nature of the problem and the assump-
tion of equal weights, a relatively short tool life was 
found.

•	 The weighting strategy employed by the WMMSE 
increased the length of the tool’s life from 6.46 to 
7.19 min (an 11.3% improvement). The resulting 
surface finishing was also better: the average sur-
face roughness’ target was reached and the maximum 
peak-to-valley roughness remained below its specified 
upper value.

•	 On the other hand and although having been consid-
ered satisfactory, the cutting time, total cycle time and 
total cost presented higher values if compared to the 
MMSE optimization.

•	 Considering that the WMMSE approach identi-
fied a better optimal condition for the process, it 
can be stated that the AISI 52100 hardened steel 
turning is optimized, with a reliability of 95%, 
through the following input parameters: Vc = 250 m/
min, f = 0.25 mm/rev and d = 0.26 mm. It results 
in: T = 7.19 min; Ct = 0.13 min; Tt = 0.81 min; 
Kp = U$ 0.76; Ra = 0.25 μm; Rt = 1.67 μm; 
MRR = 16.25 cm3/min.

•	 The confirmation tests yielded all responses inside 
their confidence intervals, allowing the experimental 
validation of this work.
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